Nonlinear Photonic Crystals

Fabrice Raineri

Laboratoire de Photonique et Nanostructures – CNRS (Marcoussis) Université Paris Diderot – Paris VII

Laboratoire de Photonique et de Nanostructures

Research in the fields of nanosciences, nanofabrication, photonics & devices from materials and technologies to basic science and applications Mainly III-V semiconductors

From Nanoscience...

...To Telecom/Photonics oriented basic research

Motivations

Domain of physics called Nonlinear optics started right after the Laser invention as it enabled the availability of light sources sufficiently intense to observe these effects:

 \rightarrow in 1961, experimental work by Franken et al on Second Harmonic generation \rightarrow in 1962 theoretical work by Bloembergen et al on wave mixing

Note that Nonlinear optics phenomena were observed before (optical pumping, Pockels effect, Raman Scattering).

From that time onwards research on nonlinear optics lead to great discoveries: parametric sources (OPO, OPA), twin photon generation, soliton propagation in optical fibers, modulators....

 \rightarrow Integrated optics is today the frontier for nonlinear optics \rightarrow efficient effects with mW incident power

 \rightarrow Photonic crystals as ideal materials for giant nonlinear processes

I- BASICS ON NONLINEAR OPTICS II- BASICS ON PHOTONIC CRYSTALS III- NONLINEAR PHOTONIC CRYSTALS

IV- NANOLASERS

- **1- General concept**
- 2- Second order nonlinear process
- **3- Third order nonlinear process**

BASICS ON NONLINEAR OPTICS: General Concept

Full Classical Approach: Lorentz Model
 A dielectric material considered as an assembly of charged particle bound together.
 In presence of an electric field, e- start to oscillate at ω frequency

→ Polarisation
$$\vec{P} = \varepsilon_0 \chi^{(1)} \vec{E}$$

 $\chi^{(1)}$ linear susceptibility

 ω_0 electron resonant frequency, γ damping factor, N electric dipoles density, m electron

BASICS ON NONLINEAR OPTICS: General Concept

Now As the Electrical Field Field amplitude increases

 → Displacement of e- is nonlinear with field amplitude!
 → Polarisation which varies nonlinearly with the Electric Field!

BASICS ON NONLINEAR OPTICS: General Concept

\rightarrow Polarisation

 $\chi^{(n+1)} < \chi^{(n)}$ (Taylor development: perturbation theory) $\chi^{(n)}$ related to the microscopic structure of the medium \rightarrow quantum theory

Nonlinear polarisation = source term in wave propagation equation

$$\vec{\nabla} \mathbf{x} \vec{\nabla} \mathbf{x} \vec{\mathsf{E}}(\mathbf{r}, \omega) - \frac{\omega^2}{c^2} \varepsilon(\vec{\mathbf{r}}, \omega) \vec{\mathsf{E}}(\mathbf{r}, \omega) = \omega^2 \mu_0 \vec{\mathsf{P}}_{\mathsf{NL}}(\vec{\mathbf{r}}, \omega)$$

In general no analytical solution to the equation

 \rightarrow Study of 2nd and 3rd order nonlinear effects

- **1- General concept**
- **2- Second order nonlinear process**
- **3- Third order nonlinear process**

Second order nonlinear process

3-wave mixing

Only possible in non centro symmetric materials

dépasser les frontières

 $\omega_1 + \omega_2 = \omega_3$ Sum frequency Generation or $\omega_1 - \omega_2 = \omega_3$ Difference frequency Generation

Set of coupled equations

 $\vec{\nabla}x\vec{\nabla}x\vec{\mathsf{E}}(\vec{\mathsf{r}},\omega_3) - \frac{\omega_3^2}{2}\varepsilon(\vec{\mathsf{r}},\omega_3)\vec{\mathsf{E}}(\vec{\mathsf{r}},\omega_3) = \omega_3^2\mu_0\varepsilon_0\chi^{(2)}(-\omega_{3;}\omega_1,\omega_2):\vec{\mathsf{E}}(\vec{\mathsf{r}},\omega_1):\vec{\mathsf{E}}(\vec{\mathsf{r}},\omega_2)$

$$\vec{\nabla} x \vec{\nabla} x \vec{E}(\vec{r}, \omega_2) - \frac{\omega_2^2}{c^2} \varepsilon(\vec{r}, \omega_2) \vec{E}(\vec{r}, \omega_2) = \omega_2^2 \mu_0 \varepsilon_0 \chi^{(2)}(-\omega_2; -\omega_1, \omega_3) : \vec{E}^*(\vec{r}, \omega_1) : \vec{E}(\vec{r}, \omega_3)$$
$$\vec{\nabla} x \vec{\nabla} x \vec{E}(\vec{r}, \omega_1) - \frac{\omega_1^2}{c^2} \varepsilon(\vec{r}, \omega_1) \vec{E}(\vec{r}, \omega_1) = \omega_1^2 \mu_0 \varepsilon_0 \chi^{(2)}(-\omega_1; -\omega_2, \omega_3) : \vec{E}^*(\vec{r}, \omega_2) : \vec{E}(\vec{r}, \omega_3)$$

To look at a simple case, let's consider the material homogene, the interacting waves plane, their propagation colinear and parallel to z direction,

we can write:

with $k_i = \omega_i \frac{\Pi(\omega_i)}{C}$

$$\vec{\mathsf{E}}(\vec{\mathsf{r}},\omega_{\mathsf{i}}) = \left(\frac{1}{2}\mathsf{A}_{\mathsf{i}}(z)e^{\mathsf{j}\mathsf{k}_{\mathsf{i}}z} + \mathsf{c.c.}\right)\vec{\mathsf{u}}_{\mathsf{Z}}$$

 \rightarrow scalar problem

coupled equations become

$$\frac{d^{2}A_{3}(z)}{dz^{2}} + 2jk_{3}\frac{dA_{3}(z)}{dz} = -\omega_{3}^{2}\mu_{0}\chi^{(2)}(-\omega_{3};\omega_{1},\omega_{2})A_{1}(z)A_{2}(z)e^{-j\Delta kz}$$

$$\frac{d^{2}A_{2}(z)}{dz^{2}} + 2jk_{2}\frac{dA_{2}(z)}{dz} = -\omega_{2}^{2}\mu_{0}\chi^{(2)}(-\omega_{2};-\omega_{1},\omega_{3})A_{1}^{*}(z)A_{3}(z)e^{j\Delta kz}$$

$$\frac{d^{2}A_{1}(z)}{dz^{2}} + 2jk_{1}\frac{dA_{1}(z)}{dz} = -\omega_{1}^{2}\mu_{0}\chi^{(2)}(-\omega_{1};-\omega_{2},\omega_{3})A_{2}^{*}(z)A_{3}(z)e^{j\Delta kz}$$

with $\Delta k = k_3 - k_2 - k_1$ phase mismatch between the wave propagating in the medium @ ω_3 and the generated wave @ ω_3

Slowly varying envelop approx:
$$\left| \frac{d^2 A_i(z)}{dz^2} \right| << \left| 2jk_i \frac{dA_i(z)}{dz} \right|$$

$$\frac{dA_{3}(z)}{dz} = \frac{j\omega_{3}}{2cn(\omega_{3})}\chi^{(2)}(-\omega_{3};\omega_{1},\omega_{2})A_{1}(z)A_{2}(z)e^{j\Delta kz}$$
$$\frac{dA_{2}(z)}{dz} = \frac{j\omega_{2}}{2cn(\omega_{2})}\chi^{(2)}(-\omega_{2};-\omega_{1},\omega_{3})A_{1}^{*}(z)A_{3}(z)e^{-j\Delta kz}$$
$$\frac{dA_{1}(z)}{dz} = \frac{j\omega_{1}}{2cn(\omega_{1})}\chi^{(2)}(-\omega_{1};-\omega_{2},\omega_{3})A_{2}^{*}(z)A_{3}(z)e^{j\Delta kz}$$

weak conversion effiency \rightarrow non depletion of the fundamental field \rightarrow A_{ω}=cte

CONVERSION EFFICIENCY:

$$\eta(z) = \frac{I_{2\omega}(z)}{I_{\omega}} = \frac{2\pi^2}{\varepsilon_0 c\lambda^2} \frac{\chi^{(2)}}{n_{\omega}^2 n_{2\omega}} (0) \left[\frac{\sin\left(\frac{\Delta k z}{2}\right)}{\frac{\Delta k}{2}} \right]^2$$

varies linearly with intensity of the fundamental frequency

Second order nonlinear process

Non phase matched

conerence length $L_{c} = \frac{\lambda}{4 |n_{2\omega} - n_{\omega}|}$ →Phasematching is primordial for high conversion efficiencies!
 → Photonic crystals for dispersion engineering!

OTHER TYPES OF SECOND ORDER PHENOMENA:

Parametric generation/amplification: $\omega_3 \rightarrow \omega_1 + \omega_2$ widely tunable sources (OPO,OPAs), optical gating techniques

Twin photon generation : $2\omega \rightarrow \omega + \omega$ generation of undistinguishable photons for quantum optics

Pockels effect: 0 (DC voltage) $\rightarrow \omega$ - ω - Control of polarisation direction (Pockels cells), control of phase shift for optical modulation (nonlinear Mach-Zender)

- **1- General concept**
- 2- Second order nonlinear process
- **3- Third order nonlinear process**

Third order nonlinear process

$\chi^{(3)}$ Processes:

- 3⁴ possible processes!
- Most common: Kerr effect, FWM, stimulated scattering, THG

Third order nonlinear process

Application of Kerr effect:

- Solitons: self phase modulation which compensates chromatic dispersion or self focusing which compensates diffraction
- Optical modulation in nonlinear interferometer or resonator

- Optical bistability in nonlinear resonator

Origin of nonlinearity

A lot of physical effect lead to the dependence of the refractive index with the field intensity. One can distinguish:

- Intrinsic nonlinearity

Light interacts with the electron cloud: no "real" energy exchange between light and matter →transparent materials

→instantaneous

 \rightarrow nonlinear refractive index n₂=2.7 .10⁻¹⁶ cm²/W (for silica – x100 for Si)

- Dynamic nonlinearity

Light exchange energy with the matter. For example, thermal effects, absorption and refractive index change linked to change in carrier density

 \rightarrow energy dissipation

 \rightarrow not instantaneous, depend on the dynamics of relaxation of the considered effect:

Thermal effects: heat dissipation occurs in microsecond

Electronic effect: linked to carrier life (ns)

 \rightarrow nonlinear refractive index n₂=10⁻⁶ cm²/W (thermal effects)

n₂=10⁻⁶ cm²/W (carrier density change)

How to get large effects:

$$\vec{\mathsf{P}} = \varepsilon_0 \chi^{(2)} \vec{\mathsf{E}} : \vec{\mathsf{E}} + \varepsilon_0 \chi^{(3)} \vec{\mathsf{E}} : \vec{\mathsf{E}} : \vec{\mathsf{E}} + \dots + \varepsilon_0 \chi^{(n)} \vec{\mathsf{E}} : \vec{\mathsf{E}} : \dots : \vec{\mathsf{E}} + \dots$$

- $\chi^{(i)}$ large (material property)
- E high (confinement, cavity)
- phase-matching and adaptation of group velocity (wave mixing)

Now the question is what system is most appropriate?

The answer liesin being à la mode

photonic crystals

- 1- Photonic Crystals: "What's in a name?"
- **2-Fabrication**
- **3- Summary on their usefulness**

1- Photonic Crystals: "What's in a name?"

Eli Yablonovitch, Optics and Photonics News March 2007

2-Fabrication

3- Summary on their usefulness

Materials with wavelength scale periodic modulation of refractive index

(E. Yablonovitch, Phys. Rev. Lett. 58 (1987) and S. John, Phys. Rev. Lett. 58 (1987))

1D	2D	3D
multilayer film	square lattice of dielectric columns surrounded by air	spheres in a FCC Configuration
AlGaAs/air waveguide	AlGaAs/air	{110} inverted opals

How do PhCs control the flow of light?

Propagation equations:

$$\frac{1}{\varepsilon(\vec{r})}\vec{\nabla}x\left\{\vec{\nabla}x\vec{E}(\vec{r})\right\} = \frac{\omega^2}{c^2}\vec{E}(\vec{r})$$
$$\vec{\nabla}x\left\{\frac{1}{\varepsilon(\vec{r})}\vec{\nabla}x\vec{H}(\vec{r})\right\} = \frac{\omega^2}{c^2}\vec{H}(\vec{r})$$

In general, the solutions are not analytical

→Numerical tools have been developed for solving the equations and obtaining the dispersion relation. One can site:
 Plane wave expansion (MIT MPB) or Guided mode expansion (Pavia)
 Finite difference time domain method
 Scattering Matrix Method

ABORATOIR PHOTONIOUE

JANIOSTRUCTURES

In 1D the problem is ANALYTICAL and the main properties can be derived

1D microcavity

Defect in the periodicity \rightarrow State in the band gap

 $Q=ω_0 τ_p/2 ≈ λ/Δλ$ Quality factor = number of cavity roundtrips

2D photonic crystals slabs

Band structure for triangular lattice of holes in a slab TE polarisation

Almost the same properties than in 1D but:
Increase control of light propagation (2D)
coupling of guided modes to the radiative modes → air bridge membrane to limit the losses

Defects in 2D photonic crystals

3D photonic crystals

Full photonic band gap

- 1- Photonic Crystals: "What's in a name?"
- **2-Fabrication**
- **3- Summary on their usefulness**

BASICS ON PHOTONIC CRYSTALS: Fabrication

Semiconductor 2D photonic crystals using planar technology

Goal: Obtaining a 2D PhC operating at telecom wavelength (1.55 microns). Lattice of holes drilled in a membrane suspended in air

lattice constant= 400nm holes diameter=200nm membrane thickness=250nm

Suspended membrane

- 1- Photonic Crystals: "What's in a name?"
- **2-Fabrication**
- **3- Summary on their usefulness**

Summary on their usefulness: Some exciting studies on PhC

On propagation

→ Compact waveguides

R. De la Rue et al, New J. Phys. 8 (2006)

→ Negative refraction

A. Berrier et al, Phys. Rev. Lett. 93, 073902 (2004) (KTH,LPN)

 \rightarrow Non-diffractive propagation...

D.W. Prather, Opt. Letters 29, 50 (2004)

On light/matter interaction

→ Control of spontaneous emission (QED experiment) Vuckovic @stanford

- → nanolasers (LPN, KAIST,...)
- → beam steering (Noda)

→ Nonlinear Optics
 (Harmonic generation, all optical data processing...)

THALES, NTT, IBM, KAIST, MIT, St Andrews, Roma, Toronto, ...

How to get large effects:

 $\vec{\mathsf{P}} = \varepsilon_0 \chi^{(2)} \vec{\mathsf{E}} : \vec{\mathsf{E}} + \varepsilon_0 \chi^{(3)} \vec{\mathsf{E}} : \vec{\mathsf{E}} : \vec{\mathsf{E}} + \dots + \varepsilon_0 \chi^{(n)} \vec{\mathsf{E}} : \vec{\mathsf{E}} : \dots : \vec{\mathsf{E}} + \dots$

χ⁽ⁱ⁾ large (material property)

E high (confinement, cavity)

phase-matching and adaptation of group velocity (wave mixing)

Why nonlinear optics and Photonic crystals?

- Photonic crystals for nonlinear optics PhC enables a quasi perfect control on light propagation:
- high Q cavities, Slow light waveguides \rightarrow High intensities in materials
- Dispersion engineering for phase matching

- Nonlinear optics for photonic crystals nonlinear optics opens the functionality portfolio of PhC:
- Sources
- manipulation of light by light

Photonic Metropolis by MIT

Passive functionalities (filtering, waveguiding....) + Active functionalities (sources, switches, memories,...)

http://ab-initio.mit.edu/photons/micropolis.html

Some work all over the world

Green light emission in silicon through slow-light enhanced third-harmonic generation in photoniccrystal waveguides

CUDOS, Institute for Photonic Optical Sciences (IPOS), Australia and University of St Andrews, UK. (2009)

Second-order nonlinear mixing in planar photonic crystal microcavities

Harvard university, USA and University of British Columbia, Canada (2006)

Some work all over the world

All-optical bistable switching in ultra-small high-Q Si photonic-crystal nanocavities. Due to high Q/V ratio, the switching energy is extremely low.

NTT basic research laboratory, Japan (2005)

Ultrafast all-optical modulation in GaAs photonic crystal cavities

Thales, LPN, Columbia Univ. (2010)

Some work all over the world

Cornell Univ, USA (2010)

NONLINEAR SEMICONDUCTOR PHOTONIC CRYSTALS

- 1- Ultracompact wavelength converter ($\chi^{(2)}$)
- 2- All-optical ultrafast switching
- **3- Solitons propagation**

NONLINEAR PHOTONIC CRYSTALS

- **1- Ultracompact wavelength converter (** $\chi^{(2)}$ **)**
- \rightarrow Second harmonic generation in 1D PhC
- \rightarrow Second harmonic generation in 2D PhC
- 2- All-optical ultrafast switching
- **3- Solitons propagation**

Second harmonic generation in AlGaAs/AlOx Bragg mirrors

→ Use anomalous dispersion at the band-edges to obtain phase matching to compensate chromatic dispersion @1.55 μ m Δ n=0.24 → L_c=1.6 μ m! in Al ₃Ga ₇As

Ultracompact device!

 \rightarrow Use increased mode density (1/v_g) to go from

 $\eta \propto L^6$

Second harmonic generation in Bragg mirrors

Al_{0.3}Ga_{0.7}As: High nonlinearity (110pm/V – 10x LiNbO₃) and no two-photon absorption @1.5 μ m AlOx/AlGaAs high index contrast \rightarrow phase-matching

Second harmonic generation in Bragg mirrors

→To increase efficiency we have to increase the number of layers BUT: limitation of the growth and processing (strain, oxidation)

SOLUTION: Planar structure

Use 2D structuration to obtain phase matching

Remember that we live in a 3D world \rightarrow problem of leaky modes @ 2 ω

→ Find a structure with phasematching and perfect confinement of the light at both frequencies

Defect structures don't work:

 -2ω has to be TM polarised because of the form of the nonlinear tensor \rightarrow small bangap -2ω is always above the light line

Perfectly periodic structure

- Phase matching is possible
- Field confinement in the transverse direction? Spatial walk-off?

SOLUTION: Use Non diffractive propagation in 2D PhC

Collaboration with UPC in Barcelona (C. Nistor, C. Cojocaru, J. Trull, K. Staliunas)

Non diffractive propagation in 2D PhC

z=[001] 🗨 0,8 light cone 0.7 x=[110] E_{SH} © 0,6 c/a 0,5 ę FW 0,4 ω (units 0,3 0,2 E_{FW} **Phase matching Condition** FW 0.1 0,0 Q Ρ М Г Г $2\omega_{FW}\omega_{SH}$ (units of c/a) **(a) (b)** 0,5 0,4 $\omega_{\rm SH}$ 1,00 1,00 0,3 k_y (units of 2π/a) ଜୁନ୍ଧୁ k_y (units of 2⊼/a) \$6 69 64 \$2 0,2-0,1 **2**ω_{FW} 0,0⊭ 0,00 0,71 0,36 1,07 1,43 2k_{FW} k_{SH} (units of ⊉/a) 0,00 0.00 0,00 0,25 0,50 0,75 0,00 0,25 0,50 0,75 1,00 1,00 k (unitsof2π/a) k (unitsof2√a) (d) **(c)**

Particular configuration: Orthorombic lattice of holes

LABORATOIRE DE PHOTONIQUE

NANOSTRUCTURES

dépasser les frontières

Numerical simulations: 2D Nonlinear FDTD

Numerical simulations: 2D Nonlinear FDTD

submitted to Phys. Rev. A

- \rightarrow SH Efficiency grows quadratically with the length \rightarrow Phase matching
- \rightarrow SH is generated backward (like in NIMs)
- \rightarrow Non diffractive propagation both @ ω and 2ω
- \rightarrow efficiency around 0.01% for 1GW/cm² for a 50 micron long structure

NONLINEAR PHOTONIC CRYSTALS

1- Ultracompact wavelength converter

2- All-optical ultrafast switching

- \rightarrow nonlinear nanocavity
- **3- Solitons propagation**

Ultrafast all-optical switching

Ultrafast all-optical switching

Origin of nonlinearity

A lot of physical effect lead to the dependence of the refractive index with the field intensity. One can distinguish:

- Intrinsic nonlinearity

Light interacts with the electron cloud: no "real" energy exchange between light and matter →transparent materials

→instantaneous

 \rightarrow nonlinear refractive index n₂=2.7 .10⁻¹⁶ cm²/W (for silica – x100 for Si)

- Dynamic nonlinearity

Light exchange energy with the matter. For example, thermal effects, absorption and refractive index change linked to carrier density

→energy dissipation

 \rightarrow not instantaneous, depend on the dynamics of relaxation of the considered effect:

Thermal effects: heat dissipation occurs in microsecond

electronic effect: linked to carrier lifetime

 \rightarrow nonlinear refractive index n₂=10⁻⁶ cm²/W (thermal effects)

 $n_2 = 10^{-6} \text{ cm}^2/\text{W}$ (carrier density change)

Origin of nonlinearity

A lot of physical effect lead to the dependence of the refractive index with the field intensity. One can distinguish:

- Intrinsic nonlinearity

Light interacts with the electron cloud: no "real" energy exchange between light and matter →transparent materials

→instantaneous

 \rightarrow nonlinear refractive index n₂=2.7 .10⁻¹⁶ cm²/W (for silica – x100 for Si)

- Dynamic nonlinearity

Light exchange energy with the matter. For example, thermal effects, absorption and refractive index change linked to carrier density

→energy dissipation

 \rightarrow not instantaneous, depend on the dynamics of relaxation of the considered effect:

Thermal effects: heat dissipation occurs in microsecond

electronic effect: linked to carrier lifetime

 \rightarrow nonlinear refractive index n₂=10⁻⁶ cm²/W (thermal effects)

n₂=10⁻⁶ cm²/W (carrier density change)

III-V quantum wells are embedded as active medium

Large optical nonlinearities through injection of carriers

n and α (or g) are dependent on intensity

MQW in GaAs

S.W. Koch et al, J. Appl. Phys. 63 R1 (1988).

→ choice of operation wavelength determines the privileged effect

Operation based on active material

III-V quantum wells are embedded as active medium

Large optical nonlinearities through injection of carriers

n and α (or g) are dependent on intensity

 λ in the tail of absorption dispersive nonlinearity optical switching, bistability

λ @ max of absorption/gain
 bsorption/gain nonlinearity
 amplification, laser emission,
 bistability

F. Raineri et al, Appl. Phys. Lett. 86, 091111 (2005)

=1549.5 nm

Pin (mW)

Having a large nonlinear response:

- \rightarrow Dynamic nonlinearities
- \rightarrow High Q cavity mode and small volume for:
 - large extinction ratio
 - higher pump intensity (can be different mode)

Having fast response:

- \rightarrow engineering of carrier lifetime
- Avoiding thermal effects which induces slow dynamics and material degradation
- \rightarrow engineering of thermal resistance (no suspended membranes!)

Ultrafast switching

Reduction of carrier lifetime using surface InGaAs QW and material patterning

•Apodized cavity concept: profile of the field envelop designed to suppress

radiation losses. (See Tanaka et al Journal of Quantum Electronics, 26, 11 (2008))

 Image: Conduction band band band band

 Valence — band

 • Progressive shift in period a:

3D FDTD calculations

Ultrafast switching

 \rightarrow sharp resonance for switching

Quasi degenerate pump-probe experiment with balanced heterodyne detection

Detection of signal at the beat frequency of probe and reference as a function of the delays

- \rightarrow we don't detect the pump
- ightarrow using a powerful reference we increase the detection sensitivity
- ightarrow we can reconstruct the signal pulse in the time domain

Ultrafast switching

Measurements

→ 12 ps carrier lifetime!

→ Switching energy of 40fJ!

10Gbits/s Wavelength conversion

NONLINEAR PHOTONIC CRYSTALS

- 1- Ultracompact wavelength converter
- 2- All-optical ultrafast switching
- **3- Solitons propagation**
- \rightarrow Motivations
- \rightarrow Slow light in PhC waveguides
- \rightarrow Solitons propagation

Motivations

Integrated optical circuit will play a crucial role in the next generations of processors:

- \rightarrow interconnections between cores
- \rightarrow enhanced bandwidth
- \rightarrow low power consumption

Among all the functionalities necessary, buffering and storing are of primary importance to allow network management and control latency

So why slow light?

Optical fiber

SOI wire waveguides

Losses ≈ 0.1dB/km

 \rightarrow 50µs for 10km and 1dB of losses

Losses $\approx 1 dB/cm$

 \rightarrow 100ps for 1cm and 1dB of losses

 \rightarrow slow light is necessary for compact delay lines

Slow light in PhC waveguides

ABORATOIRE

NANOSTRUCTURES

dépasser les frontières

M. Notomi et al, PRL 87, 253902, (2001).
H. Gersen, et al. PRL 94, 073903 (2005)
L. O'Faolain, et al. OE 15, 13129 (2007)

Studied sample

InGaP W1 waveguide

- 2 photons absorption @1.55µm avoided (InGaP bandgap @1.9ev)
- a=465nm r/a=0.19
- dispersion adjusted with modified holes at the edge of the W1 (r/a=0.22)
- Tapered tip to increase coupling (N.-V.-Q. Tran et al, Appl. Phys. Lett. 95, 061105 (2009))

Parametric amplification accurate mapping of the temporal response of PhC devices

Problem of GVD

 \rightarrow 5.10³ greater than in optical fibers!

 \rightarrow 1ps pulse stretchs up to 4ps in 1.5mm for β_2 =-1ps²/mm!

Kerr nonlinearity to conpensate GVD \rightarrow SOLITONS

Formation of a soliton

A soliton is a pulse whose temporal broadening due to dispersion is compensated by SPM due to the nonlinearity of the medium

Observed recently in 2DPhC waveguide using autocorrelation P. Colman et al, Nat. Photon 4, 862 (2010)

vg=c/9 Time domain measurements vs Power <u>x 10⁻³ x 10</u> Input power (arb. units)

Arrival time (ps)

2ps Gaussian pulse@1525nm

2ps Gaussian pulse@1525nm vg=c/9

Time domain measurements vs Power

Pulse acceleration

linear dependence of delay with input power

 $\rightarrow \Delta t/\Delta E$ =-20fs/pJ

for E_{in}=100pJ

 $\Delta v_g / v_g = 7\%$

This is attributed to:

- dependence of the effective nonlinearity with v_q not negligible in PhC case
- slow mode redshifts for increasing refractive index (Kerr Effect)

1- Photonic crystal lasers: ultimate lasers?

- \rightarrow How do you go about it?
- \rightarrow Unique properties: static and dynamic properties
- 2- Ready for application? Some issues
 → Interfacing
 → Electrical injection

1- Photonic crystal lasers: ultimate lasers?

- \rightarrow How do you go about it?
- → Unique properties: static and dynamic properties
- 2- Ready for application? Some issues
 → Interfacing
 → Electrical injection

PhC laser: How do you go about it?

when incorporate active materials (QDs or QWs)
 → low threshold and high speed lasers

PhC laser: How do you go about it?

Active materials: III-V semiconductors

DIRECT BANDGAP → radiative recombination

PhC laser: How do you go about it?

Active materials: III-V semiconductors

Rate equations model

Photon density in the lasing mode $\frac{dS}{dt} = \frac{\Gamma\beta}{\tau_{rad}} N - \frac{S}{\tau_p} + \Gamma v_g \sigma (N - N_{tr}) S$ Carrier density $\frac{dN}{dt} = R - \frac{N}{\tau_{rad}} - \frac{N}{\tau_{Nrad}} - v_g \sigma (N - N_{tr}) S$

 $\begin{aligned} \tau_{rad} \ , \ \tau_{Nrad} & \ \text{carrier lifetimes associated with radiative and non-radiative recombinations} \\ \Gamma \ \text{confinement factor} & \beta \ \text{coupling of spontaneous emission into the lasing mode} \\ \tau_p \ \text{photon lifetime} & \ v_g \ \text{group velocity} \\ \sigma \ \text{differential gain} & \ N_{tr} \ \text{carrier density} @ \ \text{transparency} \end{aligned}$

In the stationary regime \rightarrow Laser characteristics curve

Laser threshold given by gain=losses (classical definition)

In the stationary regime \rightarrow Laser characteristics curve

Log-Log Scale

Laser threshold given by gain=losses (classical definition)

What is special with PhC nanolasers?

• High Q and small modal volumes \rightarrow threshold lowering (fJ!)

$$I_{th} = \frac{q}{\beta \tau_p} \left(1 + \frac{N_{tr} \beta V \tau_p}{\tau_{rad}} \right) \left(1 + \frac{\tau_{rad}}{\tau_{Nrad}} \right)$$

• β coupling of spontaneous emission is close to 1!

 \rightarrow Spatial redistribution of spontaneous emission into the useful mode due to suppression of other modes (band gap), and Purcell effect

What is special with PhC nanolasers?

• β coupling of spontaneous emission is close to 1!

 \rightarrow Spatial redistribution of spontaneous emission into the useful mode due to suppression of other modes (band gap), and Purcell effect

What is special with PhC nanolasers?

- β coupling of spontaneous emission is close to 1!
- → Threshold-less lasers?

From G. Bjork et al, Phys. Rev. A, 50 1675-80 (1994)

No! New definitions of threshold!

Identifying the laser threshold

LABORATOIRE

NANOSTRI ICTI IRES

dépasser les frontières

Experimental observation in 2D PhC cavity + QDs

Semiconductor lasers are class B lasers! (carrier lifetime > photon lifetime)

 \rightarrow response to a short pulse pump depends on photon lifetime, carrier lifetime and on β

ABORATOIRE

NANOSTRUCTURES

dépasser les frontières

What is special with PhC nanolasers?

• β coupling of spontaneous emission is close to 1!

 \rightarrow Very fast dynamics!

104 104 10^{3} Intensity modulation response Intensity modulation response 10^{3} 50 mA 10^{2} 10² 20 mA 100 mA 10⁻²mA 10 10 ¹0' 1 1 $\beta = 10^{-5}$ $\beta = 1$ 10-1 10.1 $= 10^{12} s^{-1}$ $= 10^{12} s^{-1}$ 10-2 10-4 10^{.2} 10 mA 10⁻³ 10⁻⁵mA $\tau_{sp} = 10^{-9} s$ 10⁻⁹ s 10-3 10-3 $\tau_{m} =$ 10^{-4} 10 $\tau_{nr} > \tau_{sp}$ $\tau_{nr} > \tau_{sp}$ 10-5 $N_0 = 10^{18} \, cm^{-3}$ $N_0 = 10^{18} \, cm^{-3}$ 10-2 10-6 $V = 10^{-15} cm^{-3}$ $V = 10^{-12} cm^{-3}$ 10 10-7 10 10-2 10^{2} 10^{2} 10⁻¹ 10.3 10-2 10⁻¹ 10 10^{3} 10-3 10 103 1 1 Frequency (GHz) Frequency (GHz) from G. Bjork et al, JQE 27, 2386-96 (1991) → 100GHz modulation possible!

PhC laser: Dynamics

Some experiments

Band edge laser @1.55µm

PhC laser: Dynamics

Some experiments on nanocavities

H. Altug, Nat. Phys. 2, 484-88 (2006) 950nm Nanocavity laser

Figure 8 (online color at: www.lpr-journal.org) Large-signal lasing response in QW-driven PC laser. (a) Response to excitation pulses at (i) 9 ± 0.5 and (ii) 15 ps. (b) Excitation pulse train created by etalon setup. Imperfect mirror arrangement causes an exponential decrease in pulse power and only the first three pulses exceed the photonic crystal lasing threshold. (c) Lasing response delay.

S. Matsuo et al, Opt. Express 19, 2242-2250 (2011)

1550nm Nanocavity laser

Fig. 6. (a) Experimental setup for direct modulation. Eye diagrams for (b) 15 Gbit/s and (c) 20 Gbit/s NRZ signals.

1- Photonic crystal lasers: ultimate lasers?

- \rightarrow How do you go about it?
- \rightarrow Unique properties: static and dynamic properties
- 2- Ready for application? Some issues
 → Interfacing
 → Electrical injection

Interfacing PhC lasers with the external world

• 2DPhC lasers are very difficult to communicate with because of the strong confinement of light within cavity

problem of integration of passive material with active material

What are the solutions?

1- Photonic crystal lasers: ultimate lasers?

- \rightarrow How do you go about it?
- \rightarrow Unique properties: static and dynamic properties
- 2- Ready for application? Some issues
 → Interfacing
 → Electrical injection

Interfacing PhC lasers with the external world

Engineering of the spatial distribution of the losses: surface emission

superimposition of a grating

→ Single device! Is this better than VCSELs?

Butt coupling with selective area growth active material (Telecom approach)

S. Matsuo et al, Opt. Express 19, 2242-50 (2011)

BORATOIRE

JANIOSTRUCTURES

dépasser les frontières

Huang, J. Opt. Soc. Am. A, Vol. 11, No. 3 (1994)

Evanescent coupling: phase matching

Evanescent wave coupling with tapered fibers (for example K. Srivinasan et al, Phys. Rev. B. 70, 081306 (2004)

 \rightarrow Single device! low coupling efficiency due to low effective index of the fiber mode!

Evanescent coupling with SOI waveguides circuitry Y. Halioua et al, Opt. Express 19, 9221-31 (2011)

Electrical injection of PhC lasers

• Electrical injection is a major issue. The goal is to inject carriers and make them recombinate within the cavity. The difficulties are:

 \rightarrow PhCs are very sensitive to their environment. Contact on top of the cavity is difficult without destroying the cavity properties

 \rightarrow the presence of the holes result in an increase electrical resistance (see Anand lecture)

Only 3 groups demonstrated electrical injection of PhC lasers...

Electrical injection of PhC lasers

Smart design of the cavity and acrobatic fabrication...

Park et al, Science 305, 1444-47 (2004)

Electrical injection of PhC lasers

Lateral PIN junction in GaAs based system B. Ellis et al, Nat. Photon. 5, 297-300(2011)

Conclusion

PHOTONIC CRYSTAL PROPERTIES

- By controlling their opto-geometrical features, it is possible to engineer their response
- → slow light waveguides
- \rightarrow ultimate nanocavity: highest Q/V demonstrated (Q=10⁹ within V=(λ /n)³)

• Ultimate devices in terms of performance such as footprint, activation energy and speed

Conclusion

PHOTONIC CRYSTAL NANOLASERS • Ultrasmall footprint – smaller than 5μm²!! Threshold of the order of fJ! High speed modulation – 100GHz! σ Tapper SOME ISSUES 00000000000 Interfacing Electrical pumping Heating! (membrane...) • Weak output power (from nw to 100µW) LPN 1.0kV 4.0mm x13.0k SE(U) 3/11/2010 4.00um

- Nano-sensitive → reproducibility of fabrication?
- Sensitive to environment....
 - \rightarrow Still a lot of work to do...

